Updated project metadata. Sumoylation is emerging as a post-translation modification important for chromosome duplication and stability. The origin recognition complex (ORC), which directs DNA replication initiation by loading the MCM replicative helicases onto origins, is sumoylated in both yeast and human cells. However, the biological consequences of ORC sumoylation are largely unclear. Here we report the effects of hyper- and hypo-sumoylation of yeast ORC using multiple approaches. We show that ORC hyper-sumoylation preferentially reduces the activity of a subset of early origins, while Orc2 hypo-sumoylation has an opposing effect. Mechanistically, ORC hyper-sumoylation leads to reduced MCM loading in vitro and diminished MCM chromatin association in vivo. The importance of an appropriate level of ORC sumoylation is suggested by the data that either hyper- or hypo-sumoylation of ORC results in genome instability and a dependence on other genome maintenance factors for cell fitness. Thus, yeast ORC sumoylation status needs to be fine-tuned to achieve optimal origin activity control and genome stability.