Somatic hotspot mutations and structural amplifications and fusions affecting fibroblast growth factor receptor 2 (FGFR2) occur in multiple cancer types. However, clinical responses to FGFR inhibitors (FGFRi) have remained variable, emphasizing a need to better understand which FGFR2 alterations are oncogenic and targetable. Here we applied transposon-based screening and tumor modelling in mice to uncover truncation of exon (E) 18 of Fgfr2 as a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements (REs), E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing transcription of E18-truncated FGFR2 (FGFR2deltaE18). Somatic modelling in mice and human tumor cell lines using a compendium of FGFR2deltaE18 and full-length variants identified FGFR2deltaE18-truncation as potent single-driver alteration in cancer. Here we show the phosphoproteomic landscape of FGFR2 variants in murine epithelial cell (MEC) lines and mouse tumors. Global (STY) phosphoproteomics using IMAC and phosphotyrosine phosphoproteomics using pTyr IP’s are combined with DIA protein expression data to uncover oncogenic signaling of clinically-relevant FGFR2 variants.