Updated project metadata. This study aimed at exploring the proteomic profile of PBMCs to predict response to treatment in pulmonary tuberculosis (PTB). This was a pilot study conducted among 8 adult patients from Zanzibar, Tanzania with confirmed PTB. Blood samples were collected at baseline, at 2 months of treatment, and at the end of 6 months of treatment. Proteins were extracted from PBMCs and analysed using LC‑MS/MS‑based label‑free quantitative proteomics. Overall, 3,530 proteins were quantified across the samples, and 12 differentially expressed proteins were identified at both 2 months of treatment and at treatment completion, which were involved in cellular and metabolic processes, as well as binding and catalytic activity. Seven were downregulated proteins (HSPA1B/HSPA1A, HSPH1, HSP90AA1, lipopolysaccharide binding protein, complement component 9, calcyclin-binding protein, and protein transport protein Sec31A), and 5 proteins were upregulated (SEC14 domain and spectrin repeat-containing protein 1, leucine-rich repeat-containing 8 VRAC subunit D, homogentisate 1,2-dioxygenase, NEDD8-activating enzyme E1 regulatory subunit, and N-acetylserotonin O-methyltransferase-like protein). The results showed that proteome analysis of PBMCs can be used as a novel technique to identify potential biomarkers to assess treatment efficacy in PTB. The novel proteins elucidated in this work may provide new insights for understanding PTB pathogenesis, treatment, and prognosis.