Updated project metadata. Current therapies for Fabry disease are based on reversing intra-cellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement (ERT) or chaperone mediated stabilization, thereby alleviating lysosome dysfunction. However, the therapeutic effect in the regression of end-organ damage (ie. kidney damage) is limited. Ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not alter podocyte injury. A novel CRISPR-/CAS9-mediated -Galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptomic-based connectivity mapping and SILAC-based quantitative proteomics identified alpha-synuclein (SNCA) accumulation as a key event mediating podocyte injury.