Updated project metadata. Hospital environments serve as excellent reservoirs for the opportunistic pathogen Acinetobacter baumannii in part because it is exceptionally tolerant to desiccation. To understand the functional basis this trait, we used transposon sequencing (Tn-seq) to identify genes contributing to desiccation tolerance in A. baumannii strain AB5075. We identified 142 candidate desiccation tolerance genes, one of which encoded the global post-transcriptional regulator CsrA. We characterized CsrA in more detail by using proteomics to identify proteins that were differentially present in wild type and csrA mutant cells. Among these were a predicted universal stress protein A, an iron-containing redox protein, a KGG-domain containing protein, and catalase. Subsequent mutant analysis showed that each of these proteins was required for A. baumannii desiccation tolerance. The amino acid sequence of the KGG-domain containing protein predicts that it is an intrinsically disordered protein. Such proteins are critical for desiccation tolerance of the small animals called tardigrades. This protein also has a repeat nucleic acid binding amino acid motif, suggesting that it may protect A. baumannii DNA from desiccation-induced damage.