Vibrio natriegens is a rapidly growing salt marsh bacterium that is being developed as a synthetic biology chassis. We characterized its physiological response to different salinities and temperatures in order to optimize culturing conditions and understand its adaptations to a salt marsh environment. Using metabolomics, transcriptomics, and proteomics we determined what pathways respond to these environmental parameters. We found that organic osmolyte synthesis and membrane transporters were most responsive to changes in salinity. The primary osmolytes were glutamate, glutamine, and ectoine, responding to salinity across temperature treatments. However, when media was supplemented with choline, glycine betaine seemed to mostly replace ectoine. These results provide a baseline dataset of metabolic activity under a variety of conditions that will inform decisions made about culturing and genome engineering for future applications.