Updated project metadata. Defects in pancreatic islets and the progression of multi-tissue insulin resistance in combination with environmental factors are the main causes of type 2 diabetes (T2D). Mass spectrometry-based proteomics of five key-metabolic tissues on a cohort of 42 multi-organ donors provided deep coverage of the proteomes of pancreatic islets, visceral adipose tissue (VAT), liver, skeletal muscle and serum. Enrichment analysis of gene ontology (GO) terms built a tissue-specific map of the chronological order of altered biological processes across healthy controls (CTRL), pre-diabetes (PD) and T2D subjects. This unique dataset allowed us to explore alterations of entire biological pathways and individual proteins in multiple tissues. We confirmed the significant decrease of the citric acid cycle and the respiratory electron transport in VAT and muscle of T2D and we provided a thorough visual representation of the complete set of downregulated proteins. Importantly, we found widespread novel alterations in relevant biological pathways including the increase in hemostasis in pancreatic islets of PD, the increase in the complement cascade in liver and pancreatic islets of PD and the elevation in cholesterol biosynthesis in liver of T2D. Overall, our findings suggest inflammatory, immune and vascular impairments in pancreatic islets as potentially causal factors of insufficient insulin production and increased glucagon levels in the early stages of T2D. In contrast alterations in lipid metabolism and mitochondrial function in the liver and VAT/muscle, respectively, became evident later in manifest T2D. This first multi-tissue proteomic map indicates the temporal order of tissue-specific metabolic dysregulation in T2D development.