Updated project metadata. Epigenetic inheritance of heterochromatin requires DNA sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed “maintainer”) that is sufficient for epigenetic inheritance of preexisting histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe, but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the Origin Recognition Complex (ORC), located within a 130-base pair region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.