Updated project metadata. Atopic Dermatitis (AD) is the most common inflammatory skin disease and characterized by a deficient epidermal barrier and cutaneous inflammation. Genetic studies suggest a key role of keratinocytes in AD pathogenesis, but the alterations in the proteome that occur in the entire epidermis have not been defined. Employing a pressure-cycling technology-data-independent acquisition (PCT-DIA) approach, we performed quantitative proteomics of epidermis from healthy volunteers and lesional and non-lesional skin of AD patients. Results were validated by targeted proteomics using parallel reaction monitoring mass spectrometry or by immunofluorescence staining. The identified proteins reflect the strong inflammation in lesional skin and the defect in keratinocyte differentiation and epidermal stratification. Most importantly, they reveal impaired activation of the NRF2-antioxidant pathway and reduced abundance of mitochondrial proteins involved in key metabolic pathways in the epidermis. These results provide insight into the molecular alterations in the epidermis of AD patients and identify novel targets for pharmaceutical intervention.