Cryptosporidium parvum is a zoonotic apicomplexan parasite and a common cause of diarrheal disease worldwide. The development of vaccines to prevent or limit infection remains an important goal for tackling these diarrheal diseases, which are a significant cause of infant morbidity in the developing world. The only approved vaccine against an apicomplexan parasite targets conserved adhesins possessing a thrombospondin repeat (TSR) domains. Orthologous TSR domain-containing proteins are commonplace in the apicomplexa and C. parvum possess 12 such proteins. Here, we explore the molecular evolution and conservation of these proteins and examine their abundance in C. parvum oocysts to assess the likelihood that they may be useful as vaccine candidates. We go onto examine the glycosylation states of these proteins using antibody-enabled and ZIC-HILIC enrichment techniques, which revealed that these proteins are modified with C-linked Hex and N-linked Hex5-6HexNAc2 glycans.