Giardia lamblia (G. lamblia) disease is a zoonosis with a-infection rate affecting the general population of the world. Despite the constant possibility of damage due to their own metabolism, G. lamblia have survived and evolved to adapt to various environments. However, research on energy-metabolism conversion in G. lamblia is limited. This study aimed to reveal the dynamic metabolism-conversion mechanism in G. lamblia under sugar starvation by detecting global lysine acetylation and 2-hydroxyisobutyrylation sites combined with quantitative proteome analyses. A total of 2999 acetylation sites on 956 proteins and 7894 2-hydroxyisobutyryl sites on 1546 proteins were quantified under sugar starvation. Integrated Kac and Khib data revealed that modified proteins were associated with arginine biosynthesis, glycolysis/gluconeogenesis, and alanine, aspartate, and glutamate metabolism. These findings suggested that lysine acetylation and 2-hydroxyisobutyrylation were ubiquitous and provided deep insight into the metabolism-conversion mechanism in G. lamblia under sugar starvation. Overall, these results can help understand the biology of G. lamblia infections and reveal the evolution rule from prokaryote to eukaryote.