The unicellular, free-living, nonphotosynthetic chlorophycean alga Polytomella parva, closely related to Chlamydomonas reinhardtii and Volvox carteri, contains colorless, starch-storing plastids. The P. parva plastids lack all light-dependent processes but maintain crucial metabolic pathways. The colorless alga also lacks a plastid genome, meaning no transcription or translation should occur inside the organelle. Here, using an algal fraction enriched in plastids as well as publicly available transcriptome data, we provide a proteomic characterization of the P. parva plastid, ultimately identifying several plastid proteins, both by mass spectrometry and bioinformatic analyses. Altogether these results led us to propose a plastid proteome for P. parva, i.e., a set of proteins that participate in carbohydrate metabolism; in the synthesis and degradation of starch, amino acids and lipids; in the biosynthesis of terpenoids and tetrapyrroles; in solute transport and protein translocation; and in redox homeostasis. This is the first detailed plastid proteome from a unicellular, free-living colorless alga.