Development of a vaccine formula that alters the tumour-infiltrating lymphocytes to be more immune active against a tumour is key to the improvement of clinical responses to immunotherapy. Here, we demonstrate that, in conjunction with E7 antigen specific immunotherapy, and IL-10 and PD-1 blockade, intra-tumoral administration of caerin 1.1 and 1.9 peptides further improves the tumour microenvironment (TME) when compared with injection of a control peptide. We used single cell transcriptomics and mass spectrometry-based proteomics to quantify changes in cellular activity across different cell types within the TME. We show that the injection of caerin 1.1/1.9 increases immune activating macrophages and NK cells, while reducing immunosuppressive macrophages with M2 phenotype, and increased numbers of activated CD8+ T cells with higher populations of memory and effector-memory CD8+ T subsets. Proteomic profiling demonstrated activation of Stat1 modulated apoptosis and production of nitric oxide. Further, computational integration of the proteome with the single cell transcriptome was consistent with deactivation of immune suppressive B cell function following caerin 1.1 and 1.9 treatment.