Updated project metadata. Gut microbiota participates in diverse metabolic and homeostatic functions related to health and well-being. Individual variation in its composition depends on many factors including dietary factors. We profiled enzymatic activity of fecal microbiota in 63 healthy adult individuals using metaproteomics, and identified Bacteroides and Prevotella –derived microbial CAZy (carbohydrate-active) enzymes involved in glycan foraging. One particular profile with many Bacteroides-derived CAZy was identified in one-third of subjects (n=20), and it associated with high abundancy of Bacteroides in most subjects. In other subjects (n=8) with dietary parameters similar to former, microbiota showed intense expression of Prevotella-derived CAZy including exo−beta−(1,4)−xylanase, xylan-1,4−beta−xylosidase, alpha−L−arabinofuranosidase and several other CAZy belonging to glycosyl hydrolase families involved in digestion of complex plant-derived polysaccharides. This associated invariably with robust representation of Prevotella in gut microbiota, while subjects with intermediate representation of Prevotella showed no CAZy profile. Identification of Bacteroides- and Prevotella-derived CAZy in microbiota proteome and their association with robust differences in microbiota composition, the latter with exceptionally high Prevotella abundancy in the gut, are in evidence of individual variation in metabolic adaptation of gut microbiota with an impact on colonizing competence.