The small GTPases H, K, and NRAS are molecular switches that are indispensable for proper regulation of cellular proliferation and growth. Mutations in this family of proteins are associated with cancer and result in aberrant activation of signaling processes caused by a deregulated recruitment of downstream effector proteins. In this study, we engineered novel variants of the Ras-binding domain (RBD) of the kinase CRAF. These variants bound with high affinity to the effector binding site of active Ras. Structural characterization showed how the newly identified mutations cooperate to enhance affinity to the effector binding site compared to RBDwt. The engineered RBD variants closely mimic the interaction mode of naturally occurring Ras effectors and as dominant negative affinity reagent block their activation. Experiments with cancer cells showed that expression of these RBD variants inhibits Ras signaling leading to a reduced growth and inductions of apoptosis. Using the optimized RBD variants, we stratified patient-derived colorectal cancer organoids according to Ras dependency, which showed that the presence of Ras mutations was insufficient to predict sensitivity to Ras inhibition