Interleukin 23 (IL-23) triggers pathogenic features in pro-inflammatory, IL-17-secreting T cells (Th17 and Tγδ17) that play a key role in the development of inflammatory diseases. However, the IL-23 signaling cascade remains largely undefined. Here we used quantitative phosphoproteomics to characterize IL-23 signaling in primary murine Th17 cells. We quantified 6,888 phosphorylation sites in Th17 cells, and found 168 phosphorylations regulated upom IL-23 stimulation. IL-23 increased the phosphorylation of the myosin regulatory light chain (RLC), an actomyosin contractibility marker, in Th17 and Tγδ cells. IL-23-induced RLC phosphorylation required JAK2 and ROCK catalytic activity, and the study of the IL-23/ROCK axis revealed an unexpected role of IL-23 in the migration of Tγδ17 and Th17 cells. Moreover, pharmacological inhibition of ROCK reduced Tγδ17 recruitment to inflamed skin upon challenge with inflammatory agent Imiquimod. This work: i) provides new insights into phosphorylation networks that control Th17 cells, ii) widely expands the current knowledge on IL-23 signaling, and iii) contributes to the increasing list of immune cells subsets characterized by global phosphoproteomic approaches.