Patients with advanced colorectal cancer (CRC) are commonly treated with systemic combination therapy but suffer eventually from drug resistance. MicroRNAs (miRNAs) are suggested to play a role in treatment resistance of CRC. We studied whether restoring downregulated miR-195-5p and 497-5p sensitize CRC cells to currently used chemotherapeutics 5-fluorouracil, oxaliplatin and irinotecan. Sensitivity to 5-FU, oxaliplatin and irinotecan before and after transfection with miR-195-5p and miR-497-5p mimics was analyzed in CRC cell lines HCT116, RKO, DLD-1 and SW480. Mass spectrometry based proteomic analysis of transfected and wild-type cells was used to identify targets involved in sensitivity to chemotherapy. Proteomic analysis revealed 181 proteins with significantly altered expression after transfection with miR-195-5p mimic in HCT116 and RKO, including 118 downregulated and 63 upregulated proteins. After transfection with miR-497-5p mimic, 130 proteins were significantly downregulated and 102 were upregulated in HCT116 and RKO (P<0.05 and FC<-3 or FC>3). CHUK and LUZP1 were coinciding downregulated proteins in sensitized CRC cells after transfection with either mimic. Resistance mechanisms of these two proteins may be related to nuclear factor kappa-B signaling and G1 cell cycle arrest, respectively. Restoring miR-195-5p and miR-497-5p expression enhanced sensitivity to chemotherapy, mainly oxaliplatin, in CRC cells and could be a promising treatment strategy for patients with mCRC. Proteomics revealed potential targets of these miRNAs involved in sensitivity to chemotherapy.