The Gram-negative photoheterotrophic bacterium Dinoroseobacter shibae is a member of the high abundant marine Roseobacter group. Living in the photic zone environment of marine ecosystems D. shibae is frequently exposed to oxygen. Oxic environments are hazardous and therefore effective defense mechanisms are required. In the present study, the adaptation of D. shibae to different kinds of oxidative stresses was investigated. Hydrogen peroxide, diamide and paraquat were used as agents to trigger peroxide, thiol and superoxide stress. To define and compare the peroxide, superoxide and thiol stress stimulons in D. shibae, GeLC-MS/MS based proteomic data of cytosolic and surface associated proteins were used. Furthermore, a strain deficient in the rhizobial iron regulator (RirA) was used to study the global impact of RirA on peroxide dependent protein expression.