Pseudomonas species thrive in different nutritional environments and can catabolize divergent carbon substrates. These capabilities have important implications for the role of these species in natural and engineered carbon processing. However, the metabolic phenotypes enabling Pseudomonas to utilize mixed substrates remain poorly understood. This work is part of a multi-omics approach involving stable isotope tracers, metabolomics, fluxomics, and proteomics in Pseudomonas putida KT2440 to investigate the constitutive metabolic network that achieves co-utilization of glucose and benzoate, respectively. The data used to estimate the changes in protein abundance are deposited here and were found to partially predicted the metabolic flux changes in cells grown on the glucose:benzoate mixture versus on glucose alone. Notably, flux magnitude and directionality were also maintained by metabolite levels and regulation of phosphorylation of key metabolic enzymes.