The endogenous cellular prion protein (PrPC) can misfold into the scrapie isoform (PrPSc) and cause fatal infectious diseases. Despite significant research on the prion protein, both its normal function and whether alterations to that function play a critical role in prion diseases remain unknown. The protein consists of a predominantly alpha-helical C-terminal domain and an unstructured N-terminal domain that can coordinate Cu2+. Previous studies using NMR and EPR have revealed a tertiary association between the N-terminal domain and the C-terminal domain that we have hypothesized to be critical to the protein’s normal function. Here we investigated and quantified the inter-domain interactions within three different prion variants (wild type recombinant mouse PrPC, mutant delta central region (ΔCR), and disease mutant (E199K) after chemical cross-linking with a newly designed MS-cleavable reagent 1-(4-((2,5-Dioxopyrrolidin-1-yl)oxy)-4-oxobutyl)-4-(2-(3-methyl-3H-diazirin-3-yl)ethyl)-1,4-diazabicyclo[2.2.2] octane-1,4-diium (APDC4), followed by nHPLC(RP) and tandem MS analysis.