For individuals migrating to or residing permanently at high-altitude regions, environmental hypobaric hypoxia is a primary challenge which induces several physiological or pathological responses. It is well documented that human beings adapt to hypobaric hypoxia via some protective mechanisms, such as erythropoiesis and overproduction of hemoglobin, however little is known on the changes of plasma proteome profiles in accommodation to high-altitude hypobaric hypoxia. In the present study, we investigated differential plasma proteomes of high altitude natives and lowland normal controls by a TMT-based proteomic approach. A total of 818 proteins were identified, of which 137 were differentially altered. Bioinformatics (including GO, KEGG, protein-protein interactions, etc.) analysis revealed the dysregulated proteins were primarily involved in complement and coagulation cascades, anti-oxidative stress and glycolysis. Validations via magnetic Luminex® Assays and ELISA demonstrated that CCL18, C9, PF4, MPO and S100A9 notably up-regulated, and HRG and F11 down-regulated in high altitude natives compared with lowland controls, which were consistent with the proteomic results. Our findings highlight the roles of complement and coagulation cascades, anti-oxidative stress and glycolysis in acclimatization to hypobaric hypoxia and provide a foundation for developing potential diagnostic or/and therapeutic biomarkers for high altitude hypobaric hypoxia-induced diseases.