Updated project metadata. Drug-induced cardiotoxicity is a widespread clinical issue affecting numerous drug classes and remains difficult to treat. One such drug class is Tyrosine Kinase Inhibitors (TKIs), which cause varying degrees of contraction-related cardiotoxicity usually after weeks of exposure. Understanding molecular mechanisms underlying both acute and chronic toxicity of TKIs could help identify new treatment opportunities. Here, we presented transcriptome responses to four TKIs (Sunitinib, Sorafenib, Lapatinib and Erlotinib) across 3 doses and 4 time points in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Gene expression evolved continually under drug treatment and revealed changes in several biological networks that were associated with cardiac metabolism and contraction. These changes were confirmed by proteomics and resulted in metabolic and structural remodeling of hiPSC-CMs. One of the metabolic remodeling was the increased aerobic glycolysis induced by Sorafenib, which is an adaptive response in preserving cell survival under Sorafenib treatment. Drug adaptation in cardiac cells may represent new targets for managing chronic forms of TKI-induced cardiotoxicity.