Lung cancer is one of the leading causes of death. However, most of the researches were based on the traditional cell-culturing method. Whereas cells of lung are subjected to the mechanical forces periodically while breathing. In the present study, we applied cyclic stretch to stimulate the continuously contracting physical condition. We uncovered the stretching force-induced phosphoproteome in lung cancer cell A549 and fibroblast IMR-90. 2048 and 2604 phosphosites corresponding to 837 and 1008 phosphoproteins were identified in A549 and IMR-90, respectively. Interestingly, cytoskeleton reorganization and mitochondrial localization were enriched in the significantly expressed phosphoproteins in response to cyclic stretch. Indeed, we found this physical stress changed cell alignment thus disrupted mitochondrial dynamics. We proved that mitochondrial fusion is induced by uniaxial stretch in 2 cell lines. This study reveals the molecular mechanism of cyclic stretch and supports that stretching force enhanced cellular rearrangement and mitochondrial fusion in lung cells.