Pluripotent Embryonic Stem Cells (ESCs) can be captured in vitro in different states, ranging from unrestricted ‘naïve’ to more developmentally constrained ‘primed’ pluripotency. Complexes involved in epigenetic regulation and key transcription factors have been shown to be involved in specifying these distinct states. In this study, we use proteomic profiling of the chromatin landscape in naive pluripotent ESCs, Epistem cells (EpiSCs) and early differentiated ESCs to survey the chromatin in naïve and primed pluripotency and during differentiation. We provide a comprehensive overview of epigenetic complexes situated on the chromatin and identify proteins associated with the maintenance and loss of pluripotency. The findings presented here indicate major compositional alterations of epigenetic complexes starting from ESC priming onwards. Our results contribute to the understanding of ESC differentiation and provide a framework for future studies of lineage commitment of ESCs.