Updated publication reference for PubMed record(s): 31128654. We report the proteomic characterization of livers from Sparus aurata exposed to cold temperatures. In this study, mimicking the winter challenge conditions, a 8 week feeding trial was carried out on gilthead sea bream juveniles reared in RAS systems at a temperature ramp made of two phases of four weeks each: a cooling phase from 18°C 8 (t0) to 11°C (t1) and a cold maintenance phase at 11°C (t2). Sparus aurata livers, after exposure to the three temperature phases (t0, t1 and t2), were collected and analyzed using a shotgun proteomics approach based on filter-aided sample preparation followed by tandem mass spectrometry, peptide identification carried out using Sequest-HT as search engine within the Proteome Discoverer informatic platform, and label-free differential analysis. Along the whole trial, sea breams underwent several changes occurring upon thermal stress in liver protein abundance. These occurred mostly during the cooling phase, when catabolic processes were mainly observed. These included protein and lipid degradation and a decrease in protein synthesis and amino acid metabolism. A decrease in protein mediators of oxidative stress protection was also seen. Liver protein profiles showed less marked changes during cold maintenance, although pathways such as the methionine cycle and sugar metabolism were significantly affected. This study provided useful hints on the dynamics and extent of the metabolic shift occurring in sea bream liver with decreasing water temperature, helping the development of feeds aimed at compensating the thermal stress encountered by fish in offshore farming conditions.