Polycomb group (PcG) proteins are transcriptional repressors important to maintain cell identity during embryonic development. Ezh2, the catalytic subunit of the Polycomb Repressive Complex 2, is responsible for placing the epigenetic repressive mark histone H3 lysine 27 trimethylation (H3K27me3). In contrast to results in mouse models, zebrafish embryos mutant for both maternal and zygotic ezh2 (MZezh2) can form a normal body plan at 1 day post fertilization (dpf) but die at 2 dpf, exhibiting pleiotropic phenotypes. To elucidate the specificity of PcG-mediated repression during early zebrafish development, we conducted in depth analysis of the transcriptome, epigenome, and proteome of the MZezh2 mutant embryos at 1 dpf. We found that, despite modifications in the epigenetic landscape, transcriptome and proteome analysis revealed only minor changes in gene and protein expression levels.