Updated publication reference for PubMed record(s): 31381180. Exercise stimulates systemic and tissue-specific adaptations that protect against lifestyle related diseases including obesity and type 2 diabetes. Exercise places high mechanical and energetic demands on contracting skeletal muscle, which require finely-tuned protein post-translational modifications involving signal transduction (e.g. phosphorylation) to elicit appropriate short- and long-term adaptive responses. To uncover the breadth of protein phosphorylation events underlying the adaptive responses to endurance exercise and skeletal muscle contraction, we performed global, unbiased mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two rodent models, in situ muscle contraction in rats and treadmill-based endurance exercise in mice.