Updated publication reference for PubMed record(s): 30504831. Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by deleterious mutations in the DMD gene, rendering non-functional forms or complete absence of the protein dystrophin. Eccentric contraction-induced force loss is the most robust and reproducible phenotype of dystrophin-deficient skeletal muscle, yet the molecular mechanisms underlying force loss remain obscure. To this end, we utilized the mdx mouse model of DMD, which displays extreme sensitivity to eccentric contractions. An existing mouse line from our lab that overexpresses cytoplasmic gamma-actin specifically in skeletal muscle (mdx/Actg1-TG) was shown to significantly protect mdx muscle against contraction-induced force loss. To understand the mechanism behind this protection, we performed iTRAQ proteomics on mdx/Actg1-TG tibialis anterior (TA) muscle versus non-transgenic littermate controls to identify differentially-expressed proteins that may afford protection upon gamma-actin overexpression.