Update publication information Update publication information As a circadian organ, liver executes diverse functions in different phase of the circadian clock. This process is believed to be driven by a transcription program. Here, we present a TF DNA-binding activity centered multi-dimensional proteomics landscape, including DNA-binding activity of TFs, the phosphorylation pattern, ubiquitylation pattern, the nuclear sub-proteome, the whole proteome as well as the transcriptome, to portrait the hierarchical circadian clock network of mouse liver. The TF DNA-binding activity indicates diurnal oscillation in four major pathways, immune response, glucose metabolism, fatty acid metabolism, and the cell cycle. We also isolated the mouse liver Kupffer cells and measured their proteomes in the circadian clock to reveal cell type resolved circadian clock. These are the most comprehensive datasets for circadian clock in the mouse liver and provided the richest data resource for the understanding of mouse liver physiology around the circadian clock.