A Toxoplasma gondii infection during pregnancy can result in spontaneous abortion, preterm labor, or congenital fetal defects. The decidual immune system plays a critical role in regulating the immune micro-environment and in the induction of immune tolerance. To better understand the factors that mediate the decidual immune response associated with the T. gondii infection, a large-scale study employing TMT proteomics was conducted to characterize the differential decidual immune proteomes from infected and uninfected human decidual immune cells samples. The decidual immune cells from 105 human voluntary abortion tissues were purified, and of the 5510 unique proteins identified, 181 proteins were found to be differentially abundant (>1.2-fold cutoff, P<0.05) in the T. gondii-infected decidual immune cells. 11 proteins of 181 differentially expressed proteins associated with trophoblast invasion, placental development, intrauterine fetal growth, and immune tolerance were verified using a quantitative real-time polymerase chain reaction and western blotting. This systematic research identified a broad range of immune factors in human decidual immune cells, shedding a new insight into the decidual immune molecular mechanism for abnormal pregnancy outcomes associated with T. gondii infection.