Updated project metadata. Activating mutations in kinase/PI3K/RAS signaling pathways are common in acute leukemia with KMT2A rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remain unclear. Using a retroviral acute myeloid leukemia model, we demonstrate that NRASG12D, FLT3ITD, and FLT3N676K accelerates KMT2A-MLLT3 leukemia onset. Importantly, also the presence of subclonal FLT3N676K in KMT2A-R leukemic cells shorten disease latency, possibly by providing stimulatory factors such as Mif. Acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 were identified in KMT2A-MLLT3 driven leukemia and favored clonal expansion. KMT2A-MLLT3 leukemia with an activating mutation enforce Myc- and Myb transcriptional modules, whereas KMT2A-MLLT3 leukemias lacking activating mutations displayed upregulation of signal transduction pathways. Our results provide new insight into the biology of KMT2A-R leukemia and highlights the importance of activated signaling as a contributing driver in this disease.