Enhancers act to regulate cell type specific gene expression by facilitating the transcription of target genes. In mammalian cells active or primed enhancers are commonly marked by monomethylation of Histone H3 at lysine 4 (H3K4me1) in a cell-type specific manner. Whether and how this histone modification regulates enhancer-dependent transcription programs in mammals has been unclear. In the present study, we conducted SILAC Mass-spec experiments with mono-nucleosomes and identified multiple H3K4me1 associated proteins, including proteins involved in chromatin remodeling. We demonstrate that H3K4me1 augments the association of the chromatin remodeling complex BAF to enhancers in vivo. Furthermore we show that in vitro, H3K4me1 nucleosomes are more efficiently remodeled by the BAF complex. Crystal structures of a BAF component BAF45c further reveal that monomethylation, but not trimethylation, is accommodated in this protein’s H3K4 binding site. Our results suggest that H3K4me1 plays an active role at enhancers by facilitating the binding of the BAF complex and possibly other chromatin regulators.