Updated publication reference for PubMed record(s): 29474907. Interneurons navigate along multiple tangential paths to settle into appropriate cortical layer. They undergo saltatory migration, which is paced by intermittent nuclear jumps whose regulation relies on interplay between extracellular cues and genetic-encoded information. However, it remains unclear how cycles of pause and movement are coordinated at the molecular level. Post-translational modification of proteins contributes to cell migration regulation. The present study uncovers that carboxypeptidase 1, which promotes deglutamylation, is a pivotal regulator of pausing of cortical interneurons. Moreover, we show that pausing during migration controls the flow of interneurons invading the cortex by generating heterogeinity in movement at the population level. Interfering with the regulation of pausing not only affects the size of the cortical interneuron cohort but also secondarily impairs the generation of age-matched upper layer projection neurons.