Updated publication reference for PubMed record(s): 27499020. The integration of diverse ‘omic’ datasets will increase our understanding of the key signaling pathways that drive disease. Here, we used clinical tissue cohorts corresponding to lethal metastatic castration resistant prostate cancer (CRPC) obtained at rapid autopsy to integrate mutational, transcriptomic, and phosphoproteomic datasets for pathway analysis. Using Tied Diffusion through Interacting Events (TieDIE), we integrated differentially expressed transcriptional master regulators, functionally mutated genes, and differentially ‘activated’ kinases in CRPC tissues to synthesize a robust signaling network consisting of pathways with known and novel gene interactions. For 6 individual CRPC patients for which we had transcriptomic and phosphoproteomic data we observed distinct pathway activation states for each patient profile. In one patient, the activated pathways were strikingly similar to a prostate cancer cell line, 22Rv1, providing us with a good pre-clinical model to test targeted, combination therapies. In all, synthesis of multiple ‘omic’ datasets revealed a plethora of pathway information suitable for targeted therapies in lethal prostate cancer.