Gonorrhea occurs at high incidence worldwide and has a major impact on reproductive and neonatal health worldwide. Alarmingly, with each new antibiotic introduced for gonorrhea, resistance has emerged, including resistance to penicillin, tetracycline, fluoroquinolones, and recently the third-generation cephalosporins. Treatment options are currently seriously limited and the development of a gonorrhea vaccine is a critical, longterm solution to this problem. Progress on gonorrhea vaccines has been slow, however, in part due to the high number of surface molecules in Neisseria gonorrhoeae (GC) that undergo phase or antigenic variation and a lack of understanding of protective responses. Gonorrhea vaccine development can therefore benefit from a comprehensive, unbiased approach for antigen discovery. Here we identified cell envelop proteins from Neisseria gonorrhoeae exposed to physiology relevant conditions: presence of human serum, iron limitation and anaerobic growth.