The mutational status of the immunoglobulin heavy chain variable region (IGHV) defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and un-mutated (UM-CLL). To elucidate the molecular mechanisms underlying the adverse clinical outcome associated with UM-CLL, total proteomes from 9 UM-CLL and 9 M-CLL samples were analysed by isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry. Unsupervised clustering, based on the expression of 3521 identified proteins, separated CLL samples into two groups corresponding to IGHV mutational status. Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells under-expressed proteins associated with cytoskeletal remodelling and over-expressed proteins associated with transcriptional and translational activity. Taken together, our findings indicated that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes where they are exposed to proliferative stimuli. In keeping with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed a strong and specific association between UM-CLL and lymphadenopathy. Our study illustrates the potential of total proteome analysis to elucidate pathogenetic mechanisms in cancer.