Cyclin dependent kinase 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry, at least in part through phosphorylation of the retinoblastoma tumor suppressor protein (Rb). The CDK4/6-cyclin D-Rb pathway is commonly deregulated in human cancer, often through CDK4/6 or D-type cyclin overexpression, or inactivation of the CDK4/6 antagonist p16/CDKN2A. Importantly, a substantial fraction of cancers depend on continuous CDK4/6-cyclin D kinase activity and are sensitive to CDK4/6-specific inhibitors. Here, we investigate critical CDK4/6-cyclin D functions that may determine the sensitivity to CDK4/6 inhibitors, making use of the essential roles of CDK4/6 (CDK-4) and cyclin D (CYD-1) in the nematode C. elegans. In an unbiased screen, we found that simultaneous loss of C. elegans Rb (lin-35) and down-regulation of the APC/C substrate specificity factor FZR1/Cdh1 completely overcomes CDK-4/CYD-1 requirement. Furthermore, CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 N-terminus that correspond to inactivating phosphorylations of the human homologs. Thus, CDK-4/CYD-1 appears to promote cell cycle entry by antagonizing not only transcriptional repression by LIN-35 Rb but also protein degradation by APC/CFZR-1. Simultaneous knockdown of Rb and FZR1 in human breast cancer cells synergistically overcomes arrest by the CDK4/6-specific inhibitor PD 00332991. These results reveal APC/CFZR1 as a putative CDK4/6-Cyclin D target and important contributing factor in the response to CDK4/6-inhibitor treatment.