Updated project metadata. The brown ghost knifefish (Apteronotus leptorhynchus) is a weakly electric teleost fish of particular interest as a model organism for a variety of research areas in neuroscience, including neurophysiology, neuroethology, and neurobiology. This versatile model system has been more recently used in the study of central nervous system development and regeneration during adulthood, as well as in the study of vertebrate aging and senescence. Despite substantial scientific interest in this species, no genomic resources are currently available. After evaluating several trimming and transcript reconstruction strategies, de novo assembly using Trinity uncovered at least 11,847 unique components (“genes”) containing full or near-full length protein sequences based on alignment to a reference set of known Actinopterygii protein sequences, with as many as 42,459 components containing at least a partial protein-coding sequence, providing broad coverage of the proteome. Shotgun proteomics confirmed translation of open reading frames from over 2,000 transcripts, including alternative splice variants. Assignment of tandem mass spectra obtained was shown to be greatly improved with the assembly compared with using databases of sequences from closely related organisms.