<<< Full experiment listing

PXD000956

PXD000956 is an original dataset announced via ProteomeXchange.

Dataset Summary
TitleCarbonic anhydrases, EPF2 peptide and a novel protease, CRSP, mediate CO2 control of stomatal development
DescriptionEnvironmental stimuli, including elevated CO2, regulate stomatal development1-3 but the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. Diverse plant species show a decrease in stomatal density in response to the continuing rise of atmospheric CO2 4. To date, one mutant, hic5, defective in cell wall wax biosynthesis, has been identified that exhibits a de-regulation of this CO2-controlled stomatal development response. Here we show that recently isolated Arabidopsis thaliana carbonic anhydrase double mutant plants6 exhibit an inversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We have characterized the mechanisms mediating this response and demonstrate extracellular signaling in the regulation of CO2-controlled stomatal development by carbonic anhydrases. Transcriptomic RNA-Seq analyses show that the extracellular pro-peptide gene EPF2 7,8, but not EPF1 9, is induced at elevated CO2 in wild type, but not ca1ca4 mutant leaves. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell wall proteomic and CO2-dependent transcriptome analyses, we have identified a novel, CO2-induced extracellular protease, CRSP (CO2 Response Secreted Protease), as a mediator of CO2 controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the CA1/CA4 carbonic anhydrases and the secreted protease CRSP that cleaves the pro-peptide EPF2, which in turn represses stomatal development.
HostingRepositoryPRIDE
AnnounceDate2014-10-23
AnnouncementXMLSubmission_2014-10-23_03:38:25.xml
DigitalObjectIdentifier
ReviewLevelPeer-reviewed dataset
DatasetOriginOriginal dataset
RepositorySupportUnsupported dataset by repository
PrimarySubmitterMajid Ghassemian
SpeciesList scientific name: Arabidopsis thaliana (Mouse-ear cress); NCBI TaxID: 3702;
ModificationListiodoacetamide derivatized residue
InstrumentTripleTOF 5600
Dataset History
RevisionDatetimeStatusChangeLog Entry
02014-05-06 15:18:33ID requested
12014-08-22 01:57:58announced
22014-08-23 00:30:44announcedUpdated project metadata.
32014-10-23 03:38:26announcedUpdated project metadata.
Publication List
Engineer CB, Ghassemian M, Anderson JC, Peck SC, Hu H, Schroeder JI, Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature, 513(7517):246-50(2014) [pubmed]
Keyword List
curator keyword: Biological
submitter keyword: arabidopsis, protease, stomata,
Contact List
Majid Ghassemian
contact affiliationChemistry biochemistry, University of California San Diego
contact emailmghassem@ucsd.edu
lab head
Majid Ghassemian
contact affiliationScientist
contact emailmghassem@ucsd.edu
dataset submitter
Full Dataset Link List
Dataset FTP location
NOTE: Most web browsers have now discontinued native support for FTP access within the browser window. But you can usually install another FTP app (we recommend FileZilla) and configure your browser to launch the external application when you click on this FTP link. Or otherwise, launch an app that supports FTP (like FileZilla) and use this address: ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2014/08/PXD000956
PRIDE project URI
Repository Record List
[ + ]