CDK4/6 kinase inhibitors have shown great promise in clinical trials in various cancer types and have recently entered clinical trial for advanced prostate cancer. Although patients are expected to respond well to this class of drugs, development of resistance in some patients is anticipated. To pre-empt this and study how prostate cancer may evade CDK4/6 inhibition, new resistance models were generated from LNCaP and LAPC4 prostate cancer cells cells by prolonged culturing in presence of 0.5uM palbociclib. A shotgun phosphoproteomics approach was utilized and integrated with RNA sequencing data to unravel the molecular underpinnings of acquired resistance to palbociclib and resultant broad CDK4/6 inhibitor resistance.